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ABSTRACT 
 

NASA Glenn Research Center and Lockheed Martin 
tested an aircraft model in two wind tunnels to compare 
low-speed (subsonic) flow characteristics. Test 
objectives were to determine and document similarities 
and uniqueness of the tunnels and to verify that the  
10– by 10–Foot Supersonic Wind Tunnel  (10×10 
SWT) is a viable low-speed test facility when 
compared to the 8– by 6–Foot Supersonic Wind Tunnel 
(8×6 SWT).  Conclusions are that the data from the two 
facilities compares very favorably and that the 10– by  
10–Foot Supersonic Wind Tunnel at NASA Glenn 
Research Center is a viable low-speed wind tunnel. 

 
ACRONYMS AND SYMBOLS 

 
AOA  Angle of Attack 
AOS  Angle of Side Slip 
CDA  Concept Demonstration Aircraft 
CFD  Computational Fluid Dynamics 
CTOL  Conventional Take-off and Landing 
DOE  Design of Experiment 
JSF  Joint Strike Fighter 
M  Mach Number 
NASA National Aeronautics and Space 

Administration 
Re  Reynolds Number 
STOVL  Short take-off and vertical landing 
SWT  Supersonic Wind Tunnel 
 

INTRODUCTION 
 
When a wind tunnel test facility is chosen for a test, it 
is assumed that the results will be of high quality and 
will produce results similar to other facilities.  At 
NASA’s Glenn Research Center, two wind tunnels, the 
8×6 SWT and the 10×10 SWT, were utilized to 
perform a comparison of data results in a subsonic flow 
range. 

The subsonic comparison test was a joint effort by 
NASA and Lockheed Martin using a Lockheed Martin 
Joint Strike Fighter Concept Demonstration Aircraft 
(JSF CDA, X-35) as the test article.  As a result of 
facility control system updates, the 10×10 SWT was re-
introduced (1995) as a subsonic facility augmenting its 
supersonic capabilities.  This test was used to verify the 
10×10 SWT subsonic performance using the 8×6 SWT 
as the reference. 
 
Although the 10×10 SWT and 8×6 SWT have many 
similarities, they also have unique characteristics.  
Therefore, test data were collected in both facilities for 
multiple model configurations at various vertical 
locations in the test section, starting at the test section 
centerline and extending into the ceiling and floor 
boundary layers.  
 
Stated test objectives were as follows: 
 
1. Verify the 10×10 SWT is a viable subsonic test 

facility for the core flow area of test section based 
on comparison to the 8×6 SWT. 

 
2. Identify core flow characteristics of the 10×10 

SWT by comparing model data of the 10×10 SWT 
versus the 8×6 SWT at multiple low-speed 
conditions and model positions. 

 
3. Determine the range of motion of the model 

allowed in each tunnel to prevent boundary layer 
ingestion into the lift fan or main engine inlets.   

 
The purpose of this report is to provide an overview of 
the data comparison results and state conclusions.  In 
addition, the report includes tunnel descriptions, tunnel 
history, and references to calibration tests that were 
recently performed at both tunnels. 
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DESCRIPTION OF FACILITIES 
 
10×10 SWT DESCRIPTION 
 
The 10×10 Foot Supersonic Wind Tunnel is NASA’s 
largest continuous high-speed (Mach > 2) propulsion 
wind tunnel. Operational capabilities of the 10×10 
SWT subsonically vary from near static conditions to 
Mach 0.36 (240 knots) and supersonically from Mach 
2.0 to 3.5.  See the summary in figure 1. 
 
The tunnel is a continuous flow wind tunnel that can be 
operated in either an aerodynamic (closed loop) or 
propulsion (open loop) cycle.  The tunnel has variable 
density capability to permit simulation of altitude 
and/or Reynolds number ranges.   
 
For complete information on the 10×10 Supersonic 
Wind Tunnel, refer to the user manual.1   
 
8×6 SWT DESCRIPTION 
 
The 8×6 Foot Supersonic Wind Tunnel is part of the 
8×6 Foot Supersonic/9×15 Foot Low-Speed Wind 
Tunnel Complex where two test sections are housed in 
the same tunnel loop.  Operational capabilities of the 
8×6 SWT vary from near static conditions, Mach 0.02 
to 0.09 (14 to 60 knots) and Mach 0.25 (165 knots) up 
to Mach 2.  See summary in figure 1.  
 
The tunnel complex is an atmospheric pressure, 
continuous flow wind tunnel that can be operated in 
either an aerodynamic (closed loop) or propulsion 
(open loop) cycle.  The 8×6 SWT has the capability to 
bleed off and reduce the boundary layer with a system 
that exhausts air through the test section porous walls. 
For complete information on the 8×6 Supersonic Wind 
Tunnel refer to the user manual.2  
 
TUNNEL COMPARISON 
 
The tunnels were built at about the same time during 
the late forties/early fifties and have similar mechanical 
systems for creating and controlling airflow.  Both 
tunnels have been updated with nearly identical 
operating controls and electronic systems including 
data collecting hardware and software.  The new 
control systems have allowed for expanded operating 
capability of each tunnel including subsonic operation 
of the 10×10 SWT. 
 
Setting the tunnel airflow velocity for subsonic 
operation is similar in both tunnels.  For each tunnel 
velocity, a specified compressor speed is set.  The 
supersonic flex wall is set the same for all subsonic 

conditions and the second throat doors are set to a 
designated position. Fine-tuning of velocity is 
accomplished at the 10×10 SWT by adjusting blocker 
doors just downstream of test section while fine-tuning 
in the 8×6 SWT is accomplished by adjusting test 
section plenum pressure.  See figures 2(a) and 2(b) for 
schematics of each wind tunnel. 
 
Three main differences between the tunnels are 1) the 
subsonic speed range 2) the 8×6 SWT test section is a 
porous wall design while the 10×10 SWT has solid 
walls 3) the 10×10 SWT can obtain specific Reynolds 
numbers by varying the air density while the 8×6 SWT 
is an atmospheric facility. 
 

PREVIOUS CALIBRATION TESTS 
 
Tests were performed in 1995 for the 8×6 SWT and in 
1996 and 1998 for the 10×10 SWT to calibrate the 
tunnels at their designated subsonic operating con-
ditions. Specially designed rakes and instrumentation 
were used to map and gather information. Detailed 
reports of these calibration tests3–5 show specific 
characteristics of each tunnel’s flow fields.  
 
Highlights and conclusions of the calibration efforts for 
both tunnels are as follows: 
 
• Based on the boundary layer thickness, the usable 

test section area for the 10×10 SWT is 6 by 6 foot 
and for the 8×6 SWT is 7 by 5 foot. 

• Calibration curves relating facility instrumentation 
measurements to test section flow characteristics 
were created to provide an accurate means of 
setting operating conditions. 

• Reference tables were created to allow operators to 
repeat conditions for future subsonic tests. 

• Reports provide graphs showing spacial variation 
in pressure, Mach number, flow angle and 
spanwise turbulence. 

• Reports concluded that both tunnels have good 
quality airflow at advertised subsonic speeds. 

 
TEST HARDWARE AND INSTRUMENTATION   

 
The Lockheed Martin Joint Strike Fighter Concept 
Demonstration Aircraft (JSF CDA, X-35) 0.11554 
scale model was used in both tunnels.   See figure 2C.  
The model was instrumented with steady state and  
dynamic (high response) total pressure transducers 
across both the main engine and lift fan inlets.  In 
addition, steady state static taps were located in the 
main engine inlet throat and auxiliary main engine 
inlet.  
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Facility controlled exhaust system hardware and 
instrumentation was utilized to create (simulate) and 
measure main engine and lift fan inlet airflow.  A five-
hole flow angularity probe was traversed from the 
tunnel ceiling to measure boundary layer flow 
conditions.   
 
The standard existing facility electronics and 
instrumentation for both tunnels were utilized during 
the tests to document tunnel operating conditions.  
Steady state data were gathered in both tunnels using 
an electronically scanned pressure (ESP) system in 
conjunction with a real time data acquisition and 
display system.  High response data were gathered 
using the facility dynamic data system.  Tunnel 
instrumentation included multiple bellmouth total 
pressure taps, ceiling static pressure taps from the 
bellmouth through the test section, a hygrometer for 
dew point measurement and total temperature 
thermocouples. The test matrix sequencer (TMS) 
system was utilized to automate all model functions 
and movements for expediting test matrix sequencing. 
 

TEST PLAN 
 
The approach was to obtain subsonic data in the 8×6 
SWT and 10×10 SWT facilities using the Lockheed 
Martin Joint Strike Fighter (JSF) model configured 
identically in both tunnels.  Data were taken at the 
same tunnel velocities in both facilities and at some 
velocities only obtainable in each tunnel.  The first 
phase of the test was to maneuver the model through 
multiple positions of angle of attack and angle of 
sideslip at the test sections core flow area. The second 
phase of the test was to move the model toward  
the ceiling or floor  (tunnel height sweeps) to see the 
effects on the data when the model approaches the 
boundary layer.  Both phases were conducted in both 
the STOVL (Short take off vertical landing – Lift fan 
in operation) and CTOL (Conventional takeoff and 
landing) configurations.  Mass flows through the lift 
fan and main engine ducts were set at each condition as 
specified by the test matrix.  Also, during the tunnel 
height sweeps toward the ceiling, a five-hole flow 
angularity probe was utilized to measure boundary 
layer total pressure at multiple distances from the 
ceiling while the model entered the boundary layer.  
 
Additional data were obtained in the 8×6 SWT during 
tunnel height sweeps by shutting off the test section 
bleed system to observe the impact of the boundary 
layer bleed on tunnel/model performance.  
 

MEASUREMENT ACCURACY 
 
Pressure recovery is the main parameter that is 
evaluated when comparing the tunnels.  The pressure 
recovery is affected by the model configurations and 
tunnel conditions that are set in each tunnel; therefore 
repeatability of conditions between tunnels is critical.   
The table below shows the estimated accuracy for the 
parameters and the resulting uncertainty of the pressure 
recovery.  Pressure recovery measurement uncertainty 
is ±0.0045 or about 0.5% for either tunnel. This 
analysis does not take into account the uncertainty of 
all measuring devices used for the test except for the 
pressure measuring devices; so actual data uncertainty 
may be higher. 
 

Parameter +/- Accuracy +/- Pressure 
Recovery 

Tunnel Velocity 2.0 knots 0.0012 
Angle of Attack 0.5 degrees 0.00135 
Angle of Slip 0.5 degrees 0.0005 
Lift Fan Flow 1.0 % 0.0007 
Main Eng. Flow 1.0 % 0.0007 

0.005 psi - PT Pressure Measuring 
Device 0.005 psi - PTO 

0.0007 

Lift Fan Pressure 
Recovery Uncertainty 

  
0.0045 or  
 ~ 0.5% 

 
 

DISCUSSION OF RESULTS 
 
Pressure recovery in the lift fan and main engine inlet 
were the parameters compared between each wind 
tunnel test.   Since pressure levels in each tunnel vary 
slightly due to different atmospheric conditions, 
pressure recovery was used as a normalized parameter 
to compare between tunnels. 

The main engine and lift fan pressure recovery are 
defined as: 
PT2PT0 – Average main engine pressure recovery 

= PT2/PT0 – calculated using the area average of 
the total pressure probes at main engine 
aerodynamic interface plane (PT2), then dividing 
this average by the freestream total pressure 
(PTO). 

PT2PT0LF – Average lift fan pressure recovery  
= PT2LF/PT0 - calculated using the area average 
of the total pressure probes at lift fan aerodynamic 
interface plane (PT2LF), then dividing this 
average by the freestream total pressure (PTO). 
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Note: Complete disclosure of exact data and detailed 
description of model hardware is limited due to 
proprietary reasons.  Objectives of the tests and this 
paper are not compromised by these omissions. 

Figures 3 to 6 compare the average lift fan pressure 
recovery versus lift fan flows at four different 
tunnel/model conditions.  All four plots show the 
airflow characteristics of the wind tunnels compare 
very well at each condition, well within the 
measurement uncertainty of the pressure recovery, with 
figures 5 and 6 showing the best case and worst case 
results, respectively.  Figures 7 to 10 compare pressure 
recovery readings across the lift fan at the same 
tunnel/model conditions as figures 3 to 6.  These plots 
show how both wind tunnels produce nearly exact 
trends and results, with some exceptions, for each point 
of measurement in the lift fan.  Figures 11 to 14 
compare the average main engine pressure recovery 
when the model is in the CTOL configuration and at 
four different tunnel/model conditions.  Figures 15 and 
16 compare pressure recovery readings across the main 
engine at the same tunnel/model conditions as figures 
13 and 14.  Again, the results show a close trend of 
data with all results within the uncertainty of 
measurement with the exception of the 240 knots and 
25 degree angle of attack.  At this condition the trend is 
close but some of data points are just outside the 
acceptable uncertainty that is a result of the 
repeatability of the parameters between tunnels.  

The second phase of the test consisted of moving the 
model within the boundary layer of the floor and 
ceiling of the tunnels at 165 and 240 knots.  This would 
determine the range of motion of the model allowed to 
prevent boundary layer ingestion into the lift fan or 
main engine inlets.   

Figures 17(a) and 17(b) plot pressure recovery across 
the lift fan when the model nose is moved from outside 
to inside the known boundary layer of the each tunnel.  
Looking at each tunnel individually, pressure recovery 
is higher at some points around the lift fan but lower at 
some points thereby not indicating a significant trend 
when model nose is inside the boundary layer.  
Comparing tunnels shows consistent trends at the same 
points around the lift fan.  Average pressure recovery 
of the lift fan increased slightly in the 8×6 SWT when 
the model neared the ceiling while there was no 
significant change in the 10×10 SWT under the same 
conditions as indicated by figure 18.  None of the 
above mentioned changes in data are larger than the 
uncertainty of measurement so no real effects of 
boundary layer interaction can be concluded.  Note that 
the boundary layer thickness in the 8×6 SWT is 

approximately 6 inches and in the 10×10 SWT is 
approximately 16 inches. 
 
Figures 19(a) and 19(b) plot pressure recovery across 
the main engine when the model is in the CTOL 
configuration and is moved toward the tunnel floor into 
the boundary layer of each tunnel. Figure 20 plots the 
average main engine pressure recovery versus model 
nose distance from each tunnel floor at multiple main 
engine flows. Again, as with the STOVL configuration, 
there are no overwhelming effects in data when the 
model nose enters the boundary layer for either wind 
tunnel. Note that nose of the model is approximately 
6 inches closer to the boundary layer than both the lift 
fan and main engine inlets. 
 
Ceiling boundary layer profiles were measured at each 
tunnel and are illustrated in figures 21 and 22.  Profile 
results were consistent with the results found in 
previous calibration tests. 
 
Lockheed Martin successfully employed Design of 
Experiments (DOE) method of test matrix reduction 
with the following specific results that are of 
significance to this paper: 
 
• Average percent error in pressure recovery ranged 

from 0.3 to 0.9 % for DOE repeated data with 
higher tunnel velocities having higher error. 

• Standard Deviations of the pressure recovery data 
for the repeated tunnel and model conditions tend 
to be on the same level or smaller (less variation) 
in the 10 ×10 SWT compared to the 8×6 SWT 
DOE data. 

• Variation in test section conditions and model 
position was much smaller in the 10×10 SWT 
compared to the 8×6 SWT, except for corrected 
main engine and lift fan airflow, which had 
slightly higher variation in the 10×10 SWT. 

• The smaller variation in the tunnel conditions in 
the 10×10 SWT facility could account for the 
smaller variation seen in the 10×10 SWT pressure 
recovery data. 

Computational Fluid Dynamics (CFD) results 
conducted by Lockheed Martin generally agree with 
the test data.  

 
SUMMARY AND CONCLUDING REMARKS 

 
• Conclusions are that the 10×10 SWT is a viable 

facility (from the standpoint of data quality), in the 
speed range from 0 to 240 knots.  The core flow is 
similar in size to the 8×6 SWT (7 by 5 foot) due to 
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existing boundary layers in the 10×10 SWT (6 by 
6 foot) test section. 

• Comparing 8×6 SWT and 10×10 SWT data shows 
results are within an acceptable range with most of 
the data within 1%. 

• The boundary layer did not cause an apparent or 
significant change to data in either wind tunnel.   
However, the model was not moved very far into 
the boundary layer in the 10×10 SWT due to safety 
considerations.  The solid wall test section of the 
10×10 SWT is a disadvantage only that it shrinks 
the usable core flow.  The 8×6 SWT test section 
boundary layer perforations expand the core flow 
and with exhaust suction on, creates even a better 
flow. There is little variation at the same 
conditions within the core flow of each tunnel. 

• Design of Experiments method proved useful in 
planning test matrix and comparing the 8×6 SWT 
and 10×10 SWT operation and test results. 

 
This test was a cooperative effort between NASA 
Glenn Research Center and Lockheed Martin where 
both parties would benefit from the testing.  Lockheed 
Martin successfully evaluated several testing methods 
and model configurations, which included auxiliary 
model configurations, Design of Experiments (DOE) 
method for test matrix design, and new data reduction  

software, post-processing and database management 
programs.  NASA verified with concurrence from 
Lockheed Martin that the 10x10 SWT is a viable low-
speed wind tunnel and compares well with the 
8×6 SWT.  
 

REFERENCES 
 

1. Soeder, R.H.: User Manual for NASA Lewis  
10– by 10–Foot Supersonic Wind Tunnel. NASA 
TM–105626, 1995. 

2. Soeder, R.H.: NASA Lewis 8– by 6–Foot 
Supersonic Wind Tunnel User Manual. NASA 
TM–105771, 1993. 

3. Arrington, E.A.; Gonsalez, J.C.; Curry III, M.C.: 
Subsonic Calibration of the NASA Glenn 
Research Center 10– by 10–Foot Supersonic Wind 
Tunnel (1998 Tests), AIAA–2000–2448. 

4. Arrington, E.A.; Gonsalez, J.C: Subsonic Flow 
Quality Surveys of the NASA Glenn Research 
Center 10– by 10–Foot Supersonic Wind Tunnel. 
NASA/CR97-206326. 

5. Arrington, E.A.; Gonsalez, J.C: Low Speed 
Calibration of the NASA Lewis Research Center 
8– by 6–Foot Supersonic Wind Tunnel. 
NASA/CR97-198527. 

 

 
 
 
 
 
 
 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

8x6 

10x10 

Tunnel speed, knots

Common test conditions
for comparison test

Tunnel velocities 

Figure 1.—Subsonic velocity capabilities for each wind tunnel with common
   velocities, as indicated, used in Comparison Test.  
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Figure 2a.—Schematic of 10x10 SWT configured for subsonic flow.

Figure 2b.—Schematic of 8x6 SWT configured for subsonic flow.

Figure not available.

Figure not available.
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Figure 3.—Pressure recovery data comparison for 
   tunnel speed of 240 knots and model at 25° AOA. 
   Y-axis horizontal lines are a 1% or 0.01 change  
   in pressure recovery. Note uncertainty error bars.

Figure 5.—Best case results, pressure recovery data 
   comparison for tunnel speed of 165 knots and model
    at 10° AOA. Y-axis horizontal lines are a 1% or 0.01
    change in pressure recovery.

Figure 6.—Worst case results, pressure recovery data 
   comparison for tunnel speed of 240 knots and model
   at –5° AOA. Y-axis horizontal lines are a 1% or 0.01 
   change in pressure recovery. 
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Figure 4.—Pressure recovery data comparison for 
   tunnel speed of 165 knots and model at 25° AOA.
   Y-axis horizontal lines are a 1% or 0.01 change in
    pressure recovery.
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Figure 7.—Compares pressure recovery readings across
   lift fan for tunnel speed of 240 knots, 25° model AOA
   and 90% lift fan flow (ref. fig. 3) Y-axis horizontal 
   lines are a 1% or 0.01 change in pressure recovery. 
   Note uncertainty error bars. 
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Figure 8.—Compares pressure recovery readings across
   lift fan for tunnel speed of 165 knots, 25° model AOA
   and 90% lift fan flow (ref. fig. 4) Y-axis horizontal
   lines are a 1% or 0.01 change in pressure recovery.  
   Note uncertainty error bars.
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Figure 9.—Compares pressure recovery readings 
   across lift fan for tunnel speed of 165 knots, –10° 
   model AOA and 90% lift fan flow (ref. fig. 5) 
   Y-axis horizontal lines are a 1% or 0.01 change
   in pressure recovery.  

Figure 10.—Compares pressure recovery readings 
   across lift fan for tunnel speed of 240 knots, –5° 
   model AOA and 90% lift fan flow (ref. fig. 6) 
   Y-axis horizontal lines are a 1% or 0.01 change 
   in pressure recovery.   
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Figure 11.—In CTOL configuration, main engine 
   pressure recovery data comparison for tunnel speed
   of 240 knots and 10° model AOA. Y-axis horizontal
   lines are a 1% or 0.01 change in pressure recovery. 
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Figure 13.—In CTOL configuration, main engine 
   pressure recovery data comparison for tunnel speed 
   of 240 knots and 25° model AOA. Y-axis horizontal
   lines are a 1% or 0.01 change in pressure recovery.  
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Figure 12.—In CTOL configuration, main engine 
   pressure recovery data comparison for tunnel speed
   of 165 knots and –5° model AOA. Y-axis horizontal
   lines are a 1% or 0.01 change in pressure recovery. 
   Note uncertainty error bars.
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Figure 14.—In CTOL configuration, main engine 
   pressure recovery data comparison for tunnel speed 
   of 165 knots and 25° model AOA. Y-axis horizontal
   lines are a 1% or 0.01 change in pressure recovery.  
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Figure 15.—In CTOL configuration, compares pressure
   recovery readings across main engine for tunnel speed 
   of 240 knots, 25° model AOA and 100% main engine 
   flow (ref. fig. 13). Y-axis horizontal lines are a 1% or 
   0.01 change in pressure recovery. 
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Figure 16.—In CTOL configuration, compares pressure
   recovery readings across main engine for 165 knots,
   25° AOA and 100% main engine flow (ref. fig. 14). 
   Y-axis horizontal lines are a 1% or 0.01 change in 
   pressure recovery.  
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Figure 18.—Comparing the average lift fan pressure recovery when moving model from outside to
   inside the tunnel boundary layer for tunnel speeds of 165 and 240 knots, 25° model AOA and 100%
   lift fan flow. Y-axis horizontal lines are a 1% or 0.01 change in pressure recovery. Note uncertainty 
   error bars. Vertical lines indicate tunnel boundary layer for 10x10 SWT and 8x6 SWT.
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Figure 17a.—In the 8x6 SWT, comparing effects on lift fan pressure recovery
   when moving model from outside to inside the tunnel boundary layer for 
   tunnel speed of 240 knots, 25° model AOA and 100% lift fan flow. Y-axis 
   horizontal lines are a 1% or 0.01 change in pressure recovery.
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Figure 17b.—In the 10x10 SWT, comparing effects on lift fan pressure 
   recovery when moving model from outside to inside the tunnel boundary
   layer for tunnel speed of 240 knots, 25° model AOA and 100% lift fan 
   flow. Y-axis horizontal lines are a % or 0.01 change in pressure recovery.
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Figure 20.—Comparing the average main engine pressure recovery when moving model to inside 
   the tunnel boundary layer for tunnel speed of 165 knots, –5° model AOA and *multiple main 
   engine flows. Y-axis horizontal lines are a 1% or 0.01 change in pressure recovery. Note uncer-
   tainty error bars. Vertical lines indicate tunnel boundary layer for 10x10 and 8x6.
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Figure 19a.—In the 8x6 SWT, comparing the effects on main engine pressure recovery
   when moving model from outside to inside the tunnel boundary layer for tunnel
   speed of 165 knots, –5° model AOA and 100% lift fan flow (CTOL configuration). 
   Y-axis horizontal lines are a 1% or 0.01 change in pressure recovery.  
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Figure19b.—In the 10x10 SWT, comparing the effects on main engine pressure recovery
   when moving model from outside to inside the tunnel boundary layer for tunnels 
   speed of 165 knots, –5° model AOA and 100% lift fan flow (CTOL configuration).  
   Y-axis horizontal lines are a 1% or 0.01 change in pressure recovery.  
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Figure 21.—Boundary layer profile of 10x10 SWT for tunnel speeds of 240 and 165 knots 
   shows boundary layer thickness. Note: Reading at 0 inches is a tunnel wall static.  
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Figure 22.—Boundary layer profile of 8x6 SWT for tunnel speeds of 240 and 165 knots
   shows boundary layer thickness. Note: Reading at 0 inches is a tunnel wall static.  
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